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Abstract

The quantum Zeno interrogation experiment of Kwiat et al. (1999) demonstrates that
information about the presence of an absorbing object can be obtained with arbitrarily high
efficiency — approaching unity in the lossless limit — via repeated weak measurements that
inhibit the photon’s coherent evolution. I analyze this experiment using the observational
entropy framework of Šafránek, Aguirre, and Deutsch, which provides a unified treatment of
information-theoretic and thermodynamic entropy through coarse-grained measurements. The
framework reveals how the observer’s uncertainty about the measurement outcome, quantified by
observational entropy Sobs, decreases as the number of interrogation cycles N increases. In the
limit N → ∞, the efficiency η → 1 and Sobs → 0: complete certainty about the object’s presence
is achieved without any photon absorption, illuminating the relational character of quantum
information and the role of the observer in extracting knowledge from physical systems.

1 Introduction

The 1999 experiment by Kwiat et al. [1] stands as one of the most striking demonstrations of
the quantum Zeno effect in an optical setting. By combining the interferometric ideas of Elitzur
and Vaidman [2] with repeated polarization measurements, the experiment achieved “quantum
interrogation” of an absorbing object with efficiencies exceeding the 50% threshold of the original
interaction-free measurement proposal. In the idealized lossless limit, the efficiency η—defined as the
fraction of measurements that successfully detect the object without photon absorption—approaches
unity as the number of cycles N → ∞.

This remarkable result invites a careful information-theoretic analysis. What exactly happens to
the information content of the measurement as N increases? How does the observer’s uncertainty
evolve? These questions cannot be adequately addressed using the von Neumann entropy alone,
since pure states have zero von Neumann entropy regardless of what is known about them from a
measurement perspective.

The observational entropy framework developed by Šafránek, Aguirre, Deutsch, and collabo-
rators [3, 4, 5] provides precisely the tools needed for this analysis. Observational entropy Sobs

quantifies the uncertainty an observer would have about a system’s state given a particular coarse-
graining—that is, a specification of what measurements the observer can perform. It reduces to the
von Neumann entropy when the coarse-graining is maximally fine (measuring the density matrix
itself), but in general it exceeds the von Neumann entropy, capturing the additional uncertainty
arising from the observer’s limited measurement capabilities.
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In this paper, I apply the observational entropy framework to the Kwiat et al. experiment. The
analysis reveals a direct relationship between the interrogation efficiency η and the observational
entropy Sobs: as η → 1, we have Sobs → 0. This corresponds to a transition from maximal uncertainty
(when the measurement cannot distinguish between outcomes) to complete certainty (when the
object’s presence is determined with probability one, without absorption). The thermodynamic and
information-theoretic aspects of the measurement are unified in a single framework.

2 The Quantum Zeno Interrogation Scheme

2.1 Experimental Setup

The essential idea of the Kwiat et al. experiment is illustrated in Figure 1. A photon with initial
horizontal polarization |H⟩ is made to circulate N times through an optical system consisting of
a polarization rotator and a polarization interferometer. On each cycle, the rotator advances the
polarization angle by ∆θ = π/2N . After N cycles in the absence of any object, the photon’s
polarization has rotated to vertical |V ⟩.

The polarization interferometer separates the |H⟩ and |V ⟩ components of the photon and
recombines them with the same relative phase. If an opaque object is placed in the vertical arm,
only the horizontal component is transmitted. At each cycle, either the photon is absorbed by the
object (with probability sin2∆θ) or it survives and is projected back into the horizontal polarization
state (with probability cos2∆θ).

This constitutes a quantum Zeno effect: the repeated “measurements” by the object—or more
precisely, the possibility of absorption that projects the state—inhibit the coherent rotation of
polarization. After N cycles, if the photon has not been absorbed, its polarization remains horizontal,
unambiguously indicating the presence of the object.

2.2 Efficiency and the Lossless Limit

Following Kwiat et al. [1], we define the efficiency as

η =
PQI

PQI + Pabs
, (1)

where PQI is the probability that the photon is detected without absorption (a successful quantum
interrogation) and Pabs is the probability that the photon is absorbed by the object.

For the idealized lossless system, the analysis proceeds straightforwardly. The probability of
surviving all N cycles without absorption is

PQI = cos2N
( π

2N

)
, (2)

and the complementary probability of absorption at some cycle is

Pabs = 1− cos2N
( π

2N

)
. (3)

For large N , we can expand cos(π/2N) ≈ 1− π2/(8N2), giving

PQI ≈ 1− π2

4N
, Pabs ≈

π2

4N
. (4)
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Figure 1: Schematic of the high-efficiency quantum interrogation scheme (adapted from Kwiat et
al. [1]). With no object present, the photon’s polarization rotates stepwise from horizontal to vertical
over N cycles. An object in the V-polarized arm inhibits this evolution via the quantum Zeno effect,
so that the final polarization unambiguously indicates the object’s presence or absence.

Thus the efficiency approaches unity as

η ≈ 1− π2

4N
as N → ∞. (5)

In a real system with optical losses, the situation is more complex. Footnote 12 of Kwiat et
al. [1] provides the general expressions:

PQI = Tempty cos
2N (∆θ)TN−1

rec , (6)

Pabs = Tobj sin
2(∆θ)

1− (TemptyTrec cos
2∆θ)N

1− TemptyTrec cos2∆θ
, (7)
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where Tempty, Tobj, and Trec are the single-cycle transmission probabilities for the empty arm, the
arm with the object, and the recycling path, respectively.

Figure 2 shows the experimental realization, and Figure 3 displays the measured efficiencies for
several system configurations. The key observation is that optical loss fundamentally limits the
achievable efficiency: a photon contributing to PQI must survive all N cycles, sampling the loss N
times, whereas a photon contributing to Pabs is absorbed on average before completing all cycles.
Nevertheless, efficiencies up to 73% were observed, significantly exceeding the 50% Elitzur-Vaidman
threshold.

Figure 2: Experimental system for high-efficiency quantum interrogation (from Kwiat et al. [1]).
A pulsed laser at 670 nm is coupled into a recycling system via a high-reflectivity mirror. Quarter
waveplates rotate the polarization, and Pockels cells switch photons out after the desired number of
cycles.

3 Observational Entropy Framework

3.1 Definition and Interpretation

The observational entropy framework [3, 4, 5] provides a quantum generalization of Boltzmann
entropy that depends explicitly on the coarse-graining available to the observer. Given a density
matrix ρ̂ and a coarse-graining C = {P̂i} (a complete set of orthogonal projectors), the observational

4



Figure 3: Measured efficiency versus number of cycles for several configurations (from Kwiat et
al. [1]). The solid curve shows the theoretical prediction for a lossless system. Optical losses cause the
efficiency to reach a maximum and then decrease, but efficiencies exceeding the 50% Elitzur-Vaidman
limit were achieved.

entropy is defined as
Sobs ≡ −

∑
i

pi ln
pi
Vi

, (8)

where pi = Tr[P̂iρ̂] is the probability of obtaining outcome i in a measurement, and Vi = Tr[P̂i] =
dim(Hi) is the dimension (“volume”) of the corresponding subspace.

This definition can be decomposed into two contributions:

Sobs = SSh(pi) + ⟨SB(i)⟩pi , (9)

where
SSh(pi) = −

∑
i

pi ln pi (10)

is the Shannon entropy of the measurement outcomes, and

⟨SB(i)⟩pi =
∑
i

pi lnVi (11)

is the expected Boltzmann entropy, representing the uncertainty about the microstate within each
macrostate.
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The observational entropy satisfies fundamental bounds:

SvN(ρ̂) ≤ Sobs(ρ̂) ≤ ln(dimH), (12)

with equality on the left when the coarse-graining measures the density matrix itself, and equality
on the right when the system appears maximally mixed from the observer’s perspective.

3.2 Physical Interpretation

The observational entropy quantifies the uncertainty an observer would infer about the system’s initial
state by making a measurement, without actually performing it. In the relational interpretation of
quantum mechanics [6], this is precisely the relevant quantity: what matters is not some absolute
entropy of the quantum state, but the information that an observer can extract through available
measurements.

When Sobs = 0, the observer has complete certainty about the measurement outcome and the
system’s post-measurement state. When Sobs is maximal, the observer’s measurement reveals no
information—the outcome probabilities are proportional to the macrostate volumes, corresponding
to complete ignorance.

4 Application to Quantum Zeno Interrogation

4.1 Coarse-Graining for the Measurement

To apply the observational entropy framework to the Kwiat et al. experiment, we must specify the
relevant coarse-graining. The measurement has two possible outcomes when an object is present:

1. Quantum interrogation success (QI): The photon survives all N cycles without absorption
and is detected with horizontal polarization (after the final Pockels cell rotation), unambiguously
indicating the object’s presence.

2. Absorption (abs): The photon is absorbed by the object at some cycle k ∈ {1, 2, . . . , N}.

For the coarse-graining, we define two macrostates:

• Macrostate QI has volume VQI = 1, corresponding to a single, definite outcome.

• Macrostate abs has volume Vabs = N , since absorption could occur at any of the N cycles.
The observer’s measurement (final detection or non-detection) does not distinguish which cycle
caused the absorption.

This assignment reflects the operational reality: a successful quantum interrogation provides
complete information about the photon’s trajectory (it passed through all N cycles without interacting
with the object), while an absorption event leaves uncertainty about when the interaction occurred.

4.2 Entropy Calculation

With this coarse-graining, the observational entropy for the quantum interrogation measurement is

Sobs = −PQI ln
PQI

1
− Pabs ln

Pabs

N
. (13)

Expanding this expression:

Sobs = −PQI lnPQI − Pabs lnPabs + Pabs lnN. (14)
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The first two terms constitute the Shannon entropy of the binary outcome distribution:

SSh = −PQI lnPQI − Pabs lnPabs. (15)

The third term is the expected Boltzmann entropy:

⟨SB⟩ = Pabs lnN. (16)

4.3 Behavior as a Function of N

Using the asymptotic expressions (4), we can analyze the behavior for large N . Setting ϵ ≡ π2/4N ≪
1, we have PQI ≈ 1− ϵ and Pabs ≈ ϵ. The Shannon entropy becomes

SSh ≈ −(1− ϵ) ln(1− ϵ)− ϵ ln ϵ (17)

≈ ϵ− ϵ ln ϵ+O(ϵ2) (18)

=
π2

4N

(
1− ln

π2

4N

)
. (19)

The expected Boltzmann entropy is

⟨SB⟩ ≈ ϵ lnN =
π2

4N
lnN. (20)

For the total observational entropy:

Sobs ≈
π2

4N

(
1 + ln

4N2

π2

)
∼ π2 lnN

2N
. (21)

This reveals a crucial result: as N → ∞, Sobs → 0. The (lnN)/N decay is faster than 1/N
but slower than exponential. Physically, this means that increasing the number of cycles not
only improves the efficiency η but simultaneously reduces the observer’s uncertainty about the
measurement outcome to zero.

4.4 Numerical Results

Figure 4 presents a comprehensive view of the efficiency and entropy behavior. Panel (a) shows the
efficiency η as a function of N for both the lossless system and a representative lossy configuration.
Panel (b) displays the three entropy quantities: observational entropy Sobs, Shannon entropy SSh,
and expected Boltzmann entropy ⟨SB⟩.

Several features are noteworthy:

1. The observational entropy Sobs initially increases with N for small N , reaching a maximum near
N ≈ 3. This reflects the competition between increasing macrostate volume Vabs = N (which
increases ⟨SB⟩) and decreasing absorption probability Pabs (which decreases both entropy
contributions).

2. For N ≳ 5, Sobs monotonically decreases toward zero as efficiency increases.

3. The Shannon entropy SSh (uncertainty about which outcome occurs) dominates at small N ,
while the Boltzmann contribution ⟨SB⟩ (uncertainty about when absorption occurs, given that
it does) becomes relatively more important at intermediate N .

4. In the lossy case, the entropies remain bounded away from zero, corresponding to the funda-
mental limitation on efficiency imposed by optical losses.

Table 1 provides specific numerical values for reference.

7



Figure 4: Efficiency and observational entropy analysis of quantum Zeno interrogation. (a) Efficiency
η versus number of cycles N , showing the lossless theoretical limit (solid) and a lossy configuration
(dashed). (b) Entropy components: total observational entropy Sobs (black), Shannon entropy SSh

(red), and expected Boltzmann entropy ⟨SB⟩ (green). As η → 1, all entropy measures approach zero,
indicating complete certainty about the object’s presence without absorption.
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Table 1: Efficiency and entropy values for the lossless quantum Zeno interrogation system.
N η PQI Pabs SSh ⟨SB⟩ Sobs

1 0.000 0.000 1.000 0.000 0.000 0.000
2 0.250 0.250 0.750 0.562 0.520 1.082
5 0.605 0.605 0.395 0.671 0.635 1.306
10 0.781 0.781 0.219 0.526 0.505 1.032
20 0.884 0.884 0.116 0.359 0.348 0.707
50 0.952 0.952 0.048 0.192 0.189 0.381
100 0.976 0.976 0.024 0.111 0.116 0.227

5 Information-Theoretic Interpretation

5.1 The Relational Character of Quantum Information

The observational entropy analysis illuminates a key feature of quantum measurement: information
is fundamentally relational. The entropy Sobs does not describe an intrinsic property of the photon-
plus-object system; rather, it quantifies the uncertainty faced by an observer making a specific type
of measurement.

Consider the limit N → ∞. In this case:

• η → 1: The photon is never absorbed.

• Sobs → 0: The observer gains complete certainty about the object’s presence.

The photon never interacts with the object in the sense that no energy or momentum is exchanged.
Yet information about the object is extracted. How is this possible? The answer lies in the relational
structure of the quantum state. The possibility of interaction — embodied in the nonzero coupling
between photon and object at each cycle — is essential. The Zeno effect works precisely because each
cycle could have resulted in absorption but did not. The sequence of non-events carries information.

This is analogous to the famous “negative result” measurements discussed by Renninger [7]
and Dicke [8]. The detection of a photon at one location changes the wavefunction elsewhere,
even at locations where no physical detector is present. In the Zeno interrogation, the repeated
“measurements” by the object (whether or not they result in absorption) continuously update the
observer’s state of knowledge.

This structure has a classical analogue in the Monty Hall problem [14, 15]. When Monty opens
a door to reveal a goat, the contestant gains information not through any direct interaction with
the car, but through the elimination of a possibility that could have been realized but was not.
The host’s choice is constrained by his knowledge of where the car is located; the door he does not
open carries information precisely because he could have opened it. Similarly, in quantum Zeno
interrogation, each cycle where the photon survives without absorption updates the observer’s state
of knowledge. The object’s presence constrains which outcomes are possible; the outcomes that do
not occur — the absorptions that could have happened but did not — carry the information. In
both cases, the relational structure between observer, system, and the space of possibilities is what
enables information transfer without direct causal interaction in the naive sense.

5.2 Entropy and the Second Law

From a thermodynamic perspective, the decreasing observational entropy as N increases might seem
puzzling. How can the entropy of a closed system decrease?
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The resolution is that Sobs is not the thermodynamic entropy of the photon-object system,
but the entropy associated with a particular coarse-graining of the observer’s measurement. The
observer’s uncertainty decreases because more cycles provide more opportunities for the Zeno effect
to distinguish between the “object present” and “object absent” hypotheses.

The underlying dynamics remain unitary. If we track the full quantum state—including the
object, the photon, and all the optical elements—the von Neumann entropy is conserved. What
changes is the relationship between the observer and the system, as more information becomes
accessible through the measurement.

5.3 Connection to Observational Entropy of Thermodynamic Systems

Šafránek et al. [4, 5] have shown that observational entropy with appropriate coarse-grainings (in
energy and particle number) reproduces equilibrium thermodynamic entropy for canonical and
microcanonical ensembles, and provides a definition of non-equilibrium thermodynamic entropy that
increases during thermalization.

The quantum Zeno interrogation represents a very different application: a single-particle, pure-
state system undergoing repeated projective measurements. Yet the same mathematical structure
applies. The coarse-graining in the present case is not in energy but in measurement outcomes, and
the “thermalization” is replaced by the refinement of the observer’s knowledge through repeated
Zeno cycles.

This suggests a deep unity between thermodynamic and information-theoretic notions of entropy,
both arising from the observer’s limited access to the full microstate of a system.

6 The Lossless Limit and Perfect Knowledge

6.1 Approaching Zero Entropy

The limit N → ∞ of the lossless system represents an idealization where:

η → 1, Sobs → 0, Pabs → 0. (22)

In this limit, the observer gains certainty about the object’s presence without any photon being
absorbed—a form of “interaction-free” measurement that is genuinely interaction-free.

The approach to zero entropy follows Eq. (21):

Sobs ∼
π2 lnN

2N
→ 0. (23)

For practical purposes, achieving Sobs < 0.1 (in nats) requires N ≳ 50, and Sobs < 0.01 requires
N ≳ 500.

6.2 Physical Limitations

Of course, no real experiment achieves the lossless limit. Kwiat et al. [1] observed that optical losses
fundamentally constrain the achievable efficiency. A photon contributing to PQI must remain in the
system for all N cycles, accumulating losses, while a photon contributing to Pabs may be absorbed
early and escape further losses. This asymmetry causes η to reach a maximum at finite N before
declining.

From an observational entropy perspective, losses introduce irreducible uncertainty: some photons
are lost to neither “QI” nor “abs” outcomes, and the normalization of probabilities must account
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for this. The entropy of the measurement no longer approaches zero but saturates at a finite value
determined by the loss parameters.

Nevertheless, the conceptual point stands: in the idealized limit, the quantum Zeno effect enables
the extraction of complete information about an object’s presence without any physical interaction
in the sense of energy or momentum transfer.

7 Discussion

7.1 Summary of Results

This analysis has demonstrated:

1. The observational entropy framework of Šafránek, Aguirre, and Deutsch provides a natural
language for analyzing the information content of quantum Zeno interrogation measurements.

2. Observational entropy Sobs decreases monotonically with increasing efficiency η (for N ≳ 5),
approaching zero in the lossless limit as N → ∞.

3. The decomposition Sobs = SSh + ⟨SB⟩ separates the uncertainty about which outcome occurs
(Shannon) from the uncertainty about the microstate within each macrostate (Boltzmann).

4. The approach Sobs → 0 corresponds to perfect knowledge about the object’s presence without
absorption—a striking demonstration of the relational nature of quantum information.

7.2 Broader Implications

The quantum Zeno interrogation experiment, viewed through the lens of observational entropy,
exemplifies several deep features of quantum mechanics:

Relationality: The entropy Sobs is not an intrinsic property of the system but depends on the
observer’s measurement capabilities. Different coarse-grainings yield different entropies for the same
quantum state.

Information without interaction: The limit η → 1 shows that information transfer does not
require energy transfer. The coupling between photon and object must exist (enabling the possibility
of absorption), but the actual transfer of energy can be made arbitrarily improbable.

The role of possibility: The Zeno effect works because each cycle could have resulted in
absorption. The sequence of non-absorptions is informative precisely because absorptions were
possible. This resonates with the consistent histories interpretation [9, 10] and with relational
approaches to quantum mechanics [6].

7.3 Open Questions

Several questions remain for future investigation:

1. How does the observational entropy analysis extend to quantum objects in superposition states,
where the interrogation creates entanglement between photon and object [1, 11]?

2. Can the framework be applied to the resonance-based interaction-free measurements using
high-finesse cavities [12, 13], and how do the entropy behaviors compare?

3. What are the implications for quantum thermodynamics when the “system” is an object being
interrogated and the “bath” is the stream of interrogating photons?
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8 Conclusion

The quantum Zeno interrogation experiment of Kwiat et al. provides a vivid illustration of how
information can be extracted from a quantum system through carefully designed measurements. The
observational entropy framework offers the right mathematical tools to quantify this information
extraction, revealing that the observer’s uncertainty decreases to zero in the lossless limit of infinitely
many Zeno cycles.

This analysis reinforces a relational view of quantum information: what matters is not some
absolute property of quantum states, but the relationship between observers and systems as mediated
by measurements. The entropy Sobs captures this relationship precisely, unifying thermodynamic
and information-theoretic perspectives in a framework that applies equally to thermal equilibrium
and to single-photon quantum interrogation.

The fact that complete information about an object’s presence can be obtained without any
photon absorption remains one of the most counterintuitive and beautiful predictions of quantum
mechanics, now confirmed experimentally. The observational entropy framework provides the
language to understand exactly what “complete information” means in this context.
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